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Surface tension and buoyancy effects in 
cellular convection 

By D. A. NIELD 
Mathematics Department, University of Auckland, New Zealand 

(Received 24 September 1963 and in revised form 27 January 1964) 

The cells observed by BBnard (1901) when a horizontal layer of fluid is heated 
from below were explained by Rayleigh (1916) in terms of buoyancy, and by 
Pearson (1958) in terms of surface tension. These rival theories are now combined. 
Linear perturbation techniques are used to derive a sixth-order differential 
equation subject to six boundary conditions. A Fourier series method has been 
used to obtain the eigenvalue equation for the case where the lower boundary 
surface is a rigid conductor and the upper free surface is subject to a general 
thermal condition. Numerical results are presented. It was found that the two 
agencies causing instability reinforce one another and are tightly coupled. 
Cells formed by surface tension are approximately the same size as those formed 
by buoyancy. BBnard’s experiments are briefly discussed. 

~~ 

1. Introduction 
The phenomena of cellular convection discovered by BBnard (1901) have 

attracted the attention of many writers. A fundamental theoretical paper is that 
of Lord Rayleigh (1916), who considered instability due to the buoyancy result- 
ing from the expansion of a heated fluid. Later workers, including Jeffreys 
(1936, 1928), Low (1929), and Pellew & Southwell (1940), have extended and 
refined Rayleigh’s analysis. The agreement with experiments involving marginal 
stability has been generally good. Further physical effects, such as those associ- 
ated with a magnetic field, have been included by later authors. In  all these 
treatments the agency causing instability has been buoyancy. 

Pearson (1958) neglected buoyancy but offered a new explanation for the 
instability. He showed that if the upper surface was free then BBnard type cells 
could be produced by tractions arising from the variation with temperature of 
surface tension. He argued that in many of BBnard’s experiments the cells 
observed must have been due to a surface-tension effect rather than buoyancy. 
Pearson’s analysis involved a more complicated set of boundary conditions, 
but a simpler differential equation system, than the corresponding Rayleigh 
relations. 

Associated with buoyancy there is a dimensionless quantity (the Rayleigh 
number) which takes a critical value a t  the onset of instability. Similarly, when 
BBnard cells are formed by surface tension, a dimensionless ‘ Marangoni number ’ 
(see $3)  takes a critical value. Usually in practice both buoyancy and surface 
tension are operative, so it is natural to  ask how the two effects are coupled. 
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In  this paper a Fourier series method is adapted to this problem in its linear 
formulation. For illustration a special case is considered, namely that where the 
lower boundary is a rigid 'perfectly conducting' plane while the upper free sur- 
face is subject to a more general boundary condition. Small modifications only 
a're necessary to include the effect of a vertical magnetic field. The author has 
performed some preliminary calculations for this case, but a magnetic field is 
not considered in the present paper. 

2. The basic equations 
As the book by Chandrasekhar (1961) is likely t o  become a standard reference 

on the BBnard problem, his notation will here be followed as far as possible. 
Applying a first-order perturbation technique, he indicates how the basic fluid 
equations of motion and heat conduction reduce to 

(2.1) 

and asjat = pw + KV28. (2.2) 

Here Cartesian axes O X  Y Z  have been taken so that the fluid is confined between 
the lower plane x = 0 and the upper plane x = d. The variables w and 8 represent 
respectively the x-component of the velocity and the temperature perturbation 
from a uniform vertical temperature gradient. The gravitational acceleration g, 
the coefficient of volume expansion a, the kinematic viscosity v, the coefficient of 
thermometric conductivity K ,  and the adverse temperature gradient are each 
assumed constant. As usual V2 represents the Laplacian operator 

c72/ax2 + a2/ay2 + a2/az2 

and t represents time. 
In  addition Pearson has assumed that the surface tension S of the liquid and 

Q (the rate of heat loss per unit area from the upper free surface) can be expanded 
to the first order in powers of 8, (the temperature variation at  the surface) 
in the form 

s = so-goes, (2.3) 

(2.4) 

Here So and Qo are the unperturbed values. Denoting the temperature by T 
we see that -w0 = (aS/aT) and qo = (aQ/aT), each partial derivative being 
evaluated at  the unperturbed surface temperature. Thus - go represents the 
rate of change of surface tension with temperature, and qo the rate of change 
with temperature of the time rate of heat loss per unit area, from the upper surface. 
For most liquids go is positive since as the temperature rises the difference be- 
tween a liquid and its vapour phase decreases. The author knows of no exception. 

We now consider the boundary conditions. The lower boundary will be sup- 
posed rigid and there the non-slip conditions 

w = 0 and awl&= 0 (2.5) 
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must hold. The latter condition follows from t c  = v = 0, where u and v are the 
x- and y-components of the velocity. Pearson showed that the appropriate con- 
ditions at the upper surface are 

w = O  and 

where p is the density of the liquid. The last relation is obtained by equating 
the change in surface traction (due to the temperature variations across the 
surface) to the shear stress experienced by the liquid at the surface. The effect 
of surface tension on the normal stress condition is neglected. 

In his presentation Chandrasekhar has invariably assumed that the boundary 
surfaces are perfectly conducting, so that I9 = 0 on the boundaries. More generally 
(following Pearson) the condition on 0 may be taken as 

19 = z.ae/az, (2.7) 

where Y is a constant depending on the thermal properties of the boundary and 
liquid. The extreme cases Y = 0 and Y-l= 0 are limiting approximations to a 
very good conductor (for temperature perturbations) and to a very bad one, 
respectively. For convenience these are referred to as the ‘conducting’ and 
‘insulating ’ cases. In  particular, considering conservation of heat on transport 
across the upper surface, we have the equality 

- k, a e p z  = Po 19, (2.8) 

where kc is the coefficient of heat conduction in the liquid. In  general, a similar 
condition may apply at the lower surface, which is here taken to be conducting. 

3. Normal mode analysis 

that the perturbations w and I9 have the forms 
We now analyse an arbitrary disturbance in terms of normal modes, supposing 

w = W ( x ) e x p [ i ( k ~ c , z + k , y ) + p t ] ,  (3.1) 

I9 = O(z)  exp [ i (k , z+  k,y) +pt] ,  (3.2) 

where k = (k: + ICE)$ is the wave-number of the disturbance and p is a constant 
(which can be complex). Equations (2.1) and (3.2) now become 

p(d2/dX2 - Ic2) W = - g d 2 0  + v(d2/dz2- k2)2 W ,  (3.3) 

p @  = p W + K ( d 2 / d Z 2 - k 2 ) @ .  (3.4) 

These equations must be solved subject to the following boundary conditions. 
If the lower boundary is a rigid conductor then at  z = 0;  

W = 0, dW/dz = 0,  and 0 = 0; (3.5) 

and if the upper surface is free then at  x = d ,  

W = 0, d2W/dx2= - (crok2/pv)0 ,  and 0 = -(kc/qo)dO/dz. (3.6) 

We shall make all quantities dimensionless by choosing d/7r as the unit of length, 
d2/n2v as the unit of time, m / d  as the unit of velocity and (/3d/77) ( v / K )  as the unit 
of temperature, and putting b = kd/n,  crl = pd2/n2v, 1% = W d / m  and 

0, = 0nK/pdv. 
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We now let x, y, z stand for co-ordinates in the new unit of length. If we denote 
d/dz by D, equations (3.3) and (3.4) become 

(D2 - b2)  (D2 - b2 - g1) W, = (R/r4)  b20,, (3.7) 

and ( 0 2 - b 2 - p T 1 ) 0 ,  = -W,, (3.8) 

where R = g a p d 4 / ~ v  is the Rayleigh number and .p = V / K  is the Prandtl number. 
In  terms of the new variables and units the boundary conditions are 

W, = 0, OW, = 0, and 0, = 0 at z = 0, (3.9) 
and 

W, = 0, D2Wl = - (B/7r2)b20,, and DO, = - (L/n) 0, at z = n, (3.10) 

where B = copd2/pvK and L = qod/k ,  are further dimensionless constants intro- 
duced by Pearson. In the chemical engineering literature B has been called the 
Marangoni number. 

Equations (3.7) to (3.10) may be compared with Pearson’s equations (15) to 
(19). Allowing for the changes in units and notation, the latter are equivalent 
to ours when we put R = 0. 

We shall follow previous authors by setting r, = 0 to obtain the equatioiis 
relevant to marginal stability. Equations (3.7) and (3.8) now reduce to 

(D2 - b2)2 W, = (R/r4) b201 (3.11) 

and ( 0 2 -  b2) 0, = - F&. (3.12) 

Solutions to these equations must be found subject to the boundary conditions 
(3.9) and (3.10). Thus we have an eigenvalue system of sixth order. We are inter- 
ested in the eigenvalue equation, which is here a relationship between the para- 
meters b, R, B and L. We may fix the values of B and L and then minimise R 
as a function of the wave-number b to obtain the critical Rayleigh number for the 
onset of cellular convection. Alternatively, we may give R and L fixed values and 
obtain a critical value of the Marangoni number B by finding its minimum as b 
varies. By either means we can then plot curves of B versus R, for given values 
of L, corresponding to marginal stability. 

When R = 0 (the case treated by Pearson) the general solutions of equations 
(3.11) and (3.12) may be easily written down, and the arbitrary constants 
involved then found by satisfying the boundary conditions. When R + 0 
Pearson’s method leads to very heavy algebra. 

4. A Fourier series method 
The method described below is an adaption of one used by Goldstein (1936, 

1937) for viscous-flow instability problems and by Jeffreys & Jeffreys (1946) 
for the BBnard problem without surface tension.? Jeffreys & Jeffreys’ boundary 
conditions were particularly simple, but we shall show how a more complicated 
case can be treated. 

t This method has also been used by Jenssen (1963). 
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Under certain conditions the derivative of a Fourier series may be easily 
obtained. Following Goldstein and Jeffreys, we note that in the range 0 < x < n 
the derivative of the series 

W 

G(x)  = C. b, sinnx (4.1) 
n=l 
m 

is G’(x) = nbRcosnx, 
n = l  

provided that G(0) = G(7r) = 0. In  the same range the derivative of the series 

is 

W 

F ( x )  = &a,+ C a,cosnx 
n=l 

W 

F’(x) = I; ( - na,) sinnx, 
n= 1 

(4.3) 

(4.4) 

without specification of F(0)  and F(7r). Thus differentiating the series (4.2) we 
obtain W 

G”(x) = I; ( - n2b,) sin nx. (4.5) 
n= 1 

Then 
W 

G”’(x) 2 ( - n3b,) cos nx, 
n= 1 

provided that G“(0) = G”(n) = 0, and so on. Thus we may differentiates times the 
series (4.1) provided that G(x) and all its even derivatives of order less than s 
vanish at  both ends of the range. 

However, even if these conditions are not satisfied by a given function, we may 
construct an auxiliary function which does satisfy the conditions. For example, 
suppose we wish to differentiate a functionf(x) four times. By adding a poly- 
nomial (here a cubic) we construct a function g(x) satisfying 

g(0) = g(n) = g”(0) = g”(7r) = 0, 

and expand g(x) as a sine series. Thus we write 

g(x) f ( ~ )  - m-’[f(~) x +f(O) ( 7 ~ -  x)] - ( 6 ~ ) - l  [f”(n) X(X’ - 7~’) - f ” (O)  Z(X - n) 
m 

n=l 
x (x-27r)I = C bnsinnx. (4.7) 

Then, since g(0) = g(n) = 0, 

g’(x) G f’(X) - n-l[f(n) -f(O)] - (6n)-’ 
W 

x Lf”(7r) (3x2-n2)- f”(0)  (3~~-67rx+277~)] = 3 nb,cosnx, (4.8) 

(4.9) 

n = l  
W 

and 

Again, since g”(0)  = g’’(7r) = 0, 

g”(x) E f”(x) - r1[j”’(r)x  +f”(O) (7r - x)] = I; ( - n2bn) sin nx. 
n = l  

00 

g”’(x) E j ” ” ( ~ )  - .-‘[f”(n) -f”(O)] = C. ( - n3b,) cos VX, (4.10) 
n = l  

m 

and (4.11) 

Now the expressions for f(x), f ‘(x), . . . ,f(iv)(x) may be used to satisfy any boundary 
condition involving a linear combination of these derivatives, but in order that 
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f (x) may be made to satisfy a differential equation the polynomials must f i s t  
be expanded in the usual way as Fourier series. For example, in the range 
O < x < n w e g e t  

m m 
x =  C (-1)“(2/n)sinnx, and n - x =  (2/n)sinnx, 

so that f”(x) = {(2/nn)[ - ( - l)”f”(n) +f”(O)] - n2bn)sin nx. (4.12) 

Similarly we find that 

n=l n=l 
m 

n = l  

m 

n = l  
f(4 = 3 r - ( - l)?&f(n) + . f ( O ) l  

- (2/nn3) [ - ( -  l)”fn(n) +f”(O)] +b,)sinnx. (4.13) 

The last two formulas may be obtained more directly, but they are not always 
suitable for satisfying the boundary conditions if elimination off(O), f(n), etc., is 
later required. 

5. Solution of the differential equations 

These are 
This Fourier series method is now applied to the equations derived in $3.  

(5.1) 

and ( 0 2 -  b2) 0, = - T.4, (5.2) 

(D2-b2)2JK = Rlb201, 

subject to the boundary conditions 

n;(o) = 0, DW,(O) = 0, O1(O) = 0, (5.3a, b, c) 
W,(n) = 0, D2W,(r) = - B,b201(n), D 0 1 ( ~ )  = -L,O,(n), (5.4a,b,~) 

where we have written B, = R/n4, B, = B/n2, and L, = L/r. 

(4.12) and (4.13)) 
Since we wish to differentiate W, four times and 0, twice we write (cf. equations 

03 

11; = C {un - (2/nn3) [ - ( - 1)” D2W,(r) + D2Jq(0)]) sin nz (5 .5)  
? I =  1 

m 

and 0, = C {An - (2jnn) ( - 1)n @,(n)) sin nz ,  
n= 1 

where we have used the boundary conditions (5.3a), (5 .3~)  and ( 5 . 4 ~ ) .  Then 
m 

n=l 
D2Ei = C {-n2un+(2/nn)[-(- 1)nD2Wl(n)+D2J.t;(0)]}sinnz, ( 5 . 7 )  

and 

m 
D 4 4  = C n4unsiiinx, 

n= 1 

00 

D20,  = Z; (-+An) sinnz. 
n=l 

(5.9) 

For convenience we put D2Wl(0) = M and D2Wl(n) = N ,  and then from equa- 
tion (5.4b) we have 0,(n) = - (Blb2)-1 N .  The remaining two boundary con- 
ditions involve odd-order derivatives. Rather than substituting directly from 
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equations (5.5) and (5.6), it  is more convenient to use alternative forms. Consider- 
ing equation (4.8) we have 

W 

and 

D@ = (6n)-l[D2Wl(n) (3z2 - n2) - D21ri(0) (3z2 - Gnz + 2n2)] + C na, C O S ~ , ~ ,  
n = l  

m 
DO, = n-l@,(n) + C. nA, cos nx. 

n = l  

(5.10) 

(5.11) 

Now the boundary conditions (5.3b) and (5 .4~)  give 

and 

m 
na, = $nM + gnN, (5.12) 

n = l  
m 

( -  l),nA, = (L,+n-l) (B1b2)-l N .  (5.13) 
'n = 1 

In order to satisfy the differential equations we return to the complete Fourier 
series expressions (5.5) and (5.6). Substituting into equations (5.1) and (5 .2 )  
and equating coefficients of sin nz we obtain 

(5.15) 

Solving these two equations for a, and A, and substituting in equations (5.12) 
and (5.13) we get two homogeneous linear equations for M and N .  Eliminating 
Jl and N we obtain the eigenvalue equation as the determinant of coefficients. 
After simplification this eigenvalue equation may be written as 

(-l)nn2(n2+b2) (-l)"R1b2n2 B,b2 V ~~~ + C n2(n2 + b2)  
12.= (n2 + b2)3 - R, b2 ' 

( -  1)"n2 c ~ ~~~ 

n=l (n2+b2)3-R1b2' rL= (n2 i- b2)3 - R, b2 2 (n2+b2)3-R1b2 1 

- ,el (n2+b2)3-Rlb2 n=l (n2+b2)3-Rlb2 
W n2 1 + nL, b2(n2 + b2)2 - R, b2 

= 0, 
. .  - - Y B,b2 C 

(5.16) 
from which B, can be found in terms of b, L, and R, as the ratio of two deter- 
minants. 

If R, =l= 0 the summation of the above series must almost certainly be done 
numerically. If R, = 0, which is the case considered by Pearson, each series can 
be summed in terms of hyperbolic functions. Thus, since a = nb, 

* n2 n 2  c 
n=l (n2 + b2)2 4a - - - (coth a - a cosech2 a), 

(cosech a - a cosech a coth a), 

* n2 774 

n=l (n2 + b2)3 16a3 = -_ ( coth a + a cosech2 a - 2a2 cosech2 a coth a ) ,  

(5.17) 

(5.18) 

(5.19) 

n4 5 ( -  lYn2 = ---(cosecha+ acosechacotha- a2cosech3a-a2cosechacoth2a), 

(5.20) 

s--  - +(acotha- 1). (5.21) 

n = l  (n2+b2)3 16a3 

b2 
n-l n2+b2 
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Equation (5.17) then reduces (after some manipulation) to 

(5.22) 
8a(a cosh a + L sinh a) (a - sinh a cosh a) 

a3 cosh a - sinh3% 
B = ________ 

This is Pearson's equation (27) when misprints in the latter are corrected. (In 
equation (5.22) we have re-introduced B = m2B, and L = nL,.) 

For numerical calculation when R, + 0, it  is convenient to split each series 
into two parts, the first being that for €2, = 0. The second part is in each case 
more rapidly convergent. For example 

(5.23) 
* n2 m R, b2n2 

==i- + s ~- 
n2(n2+b2) 

n=l c (n2 + b2)3 - R, b2 7LY1 (n2 + b2)2 (n2+b2)2[(n2+b2)3-R1b2]' 

The method described above to obtain the eigenvalue equation appears to be 
especially applicable to an ordinary linear differential equation involving deri- 
vatives all of even order (or all odd) with constant coefficients, subject to bound- 
ary conditions involving a linear combination of derivatives. (It was convenient 
here to sum certain series in terms of elementary functions, but this is not essen- 
tial.) The order of the determinant obtained is then equal to the number of 
boundary conditions which contain at least one odd-order derivative. For ex- 
ample, if the boundary condition O,(O) = 0 were replaced by DO,(O) = K,O,(O) 
(thus generalizing the thermal boundary condition at  the lower surface), then 
a 3 x 3 determinant would be obtained. 

6. Numerical results 
An IBM 1620 digital computer was programmed to calculate B, for various 

values of b, L, and R,. The minimum of B, with respect to b (for given values 
of L, and R,) was obtained by interpolation. For presentation, the results have 
been expressed in terms of the more familiar parameters a, R, B and L. 

The (R,B)-locus corresponding to marginal stability is plotted in figure 1, 
for each of the limiting cases L = 0 and L = 03. (The values plotted are the critical 
values at the appropriate critical wave-numbers.) For intermediate values of 
L the loci lie between these two curves, the curvature increasing monotonically 
with increase in L. The region where R > 0 but B < 0 is applicable to a layer of 
liquid adhering to a ceiling which is cooler than the air below, or to a liquid whose 
coefficient of volume expansion is negative (for example, water at a temperature 
between 0 and 4 "C) cooled from below. That region where R < 0 but B > 0 is 
applicable to the opposite cases of a hotter ceiling, or a contracting liquid heated 
from below. 

Figure 2 illustrates the variation of the corresponding dimensionless wave- 
numbers at  marginal stability. These give the sizes of the convection cells which 
are formed. 

In  table 1 are presented the numerical values of Be and aB (the critical Maran- 
goni number and wave-number when R = 0) and of R, and aR (the critical 
Rayleigh number and wave-number when B = 0), for various values of L. 
When L becomes large R, tends to a finite limit, while Be becomes asymptotically 
proportional to L. The wave-numbers remain finite. 
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L =  

0.5 1.0 

349 

> 

R/Rc (Normalized Rayleigh number) 

FIGURE 1. Stability diagram. Plot of Marangoni and Rayleigh numbere for marginal 
stability (normalized to give unit intercepts on the co-ordinate axes). L = 0 and L = co 
refer to ‘insulating’ and ‘conducting’ free surfaces. Points below a curve represent 
stable states. 

L 
0 
0.0 1 
0.1 
0.2 
0.5 
1 
2 
5 

10 
20 
50 

100 
1000 
1010 

B, 
79.607 
79.991 
83.427 
87.195 
98.256 

116.137 
150-679 
250.598 
4 13.440 
736.00 

1699.62 
3303.83 

32170.1 
32.0730 x 1O’O 

a B  

1.993 
1.997 
2.028 
2.060 
2.142 
2.246 
2.386 
2-598 
2.743 
2.852 
2.941 
2.976 
3.010 
3.014 

R, 
669.00 
670.38 
682.36 
694.78 
727.42 
770.57 
831.27 
925-51 
989.49 

1036-30 
1072-19 
1085.90 
1099.12 
1100.65 

a R  

2.086 
2.089 
2.117 
2.144 
2.212 
3.293 
2-393 
2-519 
2.589 
2.632 
2.661 
2.672 
2.681 
2.683 

TABLE 1. Critical values of Marangoni number and Rayleigh number, 
and the corresponding wave-numbers for various values of L 



350 D. A .  i l ie ld  

n I 
-"0.5 0 0-5 1 *o 1-5 

R/Rc (Normalized Rayleigh number) 
FIGURE 2. Wave-numbers corresponding to marginal stability, plotted 

against normalized Rayleigh number. (Re corresponds to B = 0.) 

7. Discussion 
The values of B, and a, when L = 0 confirm those calculated by Pearson, while 

those of R, and aR when L is very large (taken here as lolo) agree precisely with 
those calculated by Reid & Harris (1958) and quoted in Chandrasekhar's book. 

From figure 1 we see that since the critical Marangoni number decreases with 
increase of the Rayleigh number, the two agencies causing instability (buoyancy 
and the variation with temperature of surface tension) reinforce each other. The 
small curvature, concave downwards, shows that the coupling between the two 
agencies is tight (in the sense that a small change in either B or R results in a 
change of the same order in the other) but not perfect. The following argument 
shows that if there were maximum reinforcement of the two agencies, one 
would expect the locus to be the straight line RIB, + BIB, = 1. Since R is pro- 
portional to p, and thus to the temperature difference between the upper and 
lower surfaces, the energy potentially available from the buoyancy effect is 
proportional to R. Thus for a fixed cellular size and streamline pattern, RIR, is 
the ratio of the energy available from buoyancy to that required to balance the 
viscous dissipation a t  the onset of convection. Similarly on our linear theory 
the energy potentially available from surface tension tractions is proportional 
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to p and thus to B. Thus BIB, is the ratio of the energy available from surface 
tension to the viscous dissipation at the onset of convection. Since at marginal 
stability there is a balance between the kinetic energy dissipated by viscosity 
and the energy supplied by the buoyancy and surface tension forces, the conclu- 
sion follows. 

Because of the difference in nature of the agencies, the tightness of the coupling 
is surprising. It is presumably a consequence of the small difference between the 
sizes of the cells produced by the agencies acting separately. The coupling is 
particularly tight when the free surface is ‘insulating’ (L = 0). For this case the 
values of aB and a, are 1.993 and 2.086, respectively. When the free surface is 
‘conducting’ (L very large) the coupling is less tight. Now the difference in cell 
sizes is greater, the values for aB and aR being 3.014 and 2-682. This is further 
illustrated by figure 2. 

Increase in L from 0 to 00 means a change in the thermal boundary condition 
at the free surfaces from DO = 0 to O = 0. Since R appears in the differential 
equation system as an eigenvalue, general theory predicts that the critical 
Rayleigh number for a fixed value of B should be an increasing function of L. 
A t  the same time the critical wave-number increases, so that the size of the con- 
vection cells decreases. These trends might be forecast on physical grounds. 
With an insulated boundary it is easier for temperature perturbations to be set 
up, and a smaller vertical thermal gradient is required. Less energy must then 
be dissipated by vorticity to balance the reduced release of internal energy by 
buoyancy. Both dissipation and energy release are greater for a fine reticulation 
into cells. Larger cells (or smaller wave-numbers) are therefore associated with 
the insulating case of L = 0. 

When the free surface is a good conductor any temperature variations across 
the surface decay rapidly and surface tension tractions are therefore small. 
Thus when L is large the critical Marangoni number must also be large. We find 
that asymptotically B, = 32-073L. Again, as L increases the corresponding 
wave-number increases, so that the size of the convection cells decreases. 

The values of R, and aR for the case L = 0 are particularly interesting. These 
are the values of the Rayleigh number and the wave-number a t  the onset of 
instability caused by changes of density only, when the lower boundary is a 
‘rigid conductor’ and the upper is a ‘free insulating’ surface. Jeffreys (1926) 
treated this case, but with incorrect boundary conditions, and obtained the values 
571 and 3-5, respectively, in contrast to the values 669.00 and 2.086 obtained 
here. In  a later paper Jeffreys (1928) gave the correct boundary conditions but 
did not repeat his calculation, and his incorrect values were the best available to 
Pearson. 

Pearson pointed out that BBnard’s experimental results led to values of a 
between 2.1 and 2.5, which were in better agreement with Pearson’s value for aB, 
namely 2.0, than with the Jeffreys value of 3.5 for aR, suggesting that BBnard’s 
cells were caused by surface tension alone. This argument is no longer justified, 
since the present results indicate little difference between aB and aR for a given 
small value of L. 

However, Pearson’s alternative argument still holds. This was based on the 
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evidence that in at least some of BBnard’s experiments the critical Rayleigh 
number R, was not exceeded but the critical Marangoni number B, was almost 
certainly exceeded. Further confirmation is provided by the experiments de- 
scribed by Block (1956). 

It is thus probable that the cells observed by BBnard were caused mainly 
by surface tension. Since B contains a factor d2 while R depends on d4 one might 
expect surface tension to become more important for thin layers of liquid. 
(Buoyancy must, of course, be the sole agency responsible when there is no free 
surface.) A repetition of the original experiments in order to obtain more precise 
quantitative results would be welcomed. 

The author wishes to thank Dr C. M. Segedin for much helpful advice (including 
the suggestion of the Fourier series method used here) and for constant encourage- 
ment. The author is also grateful to Dr R. A. Wooding for the interest he has 
taken in this work, and to Dr B. R. Morton for suggesting the problem. 
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